talistics FOR DATA SCIENCE UNIT-3

feedback/corrections: vibha @ pesu.pes.edu

Vibha Masti

- Sample statistic calculated from the data used to estimate an unknown parameter
- ° Single numeric value specified for the data
- ° Infers about population parameters

Point estimators - - - unknown population parameters imators $\frac{1}{\mathsf{X}}$ $\begin{picture}(180,10) \put(0,0){\vector(1,0){100}} \put(15,0){\vector(1,0){100}} \put(15,0){\vector(1,0){100}} \put(15,0){\vector(1,0){100}} \put(15,0){\vector(1,0){100}} \put(15,0){\vector(1,0){100}} \put(15,0){\vector(1,0){100}} \put(15,0){\vector(1,0){100}} \put(15,0){\vector(1,0){100}} \put(15,0){\vector(1,0){100}} \put(15,0){\vector(1,0){100}}$ \overrightarrow{P} \overrightarrow{P} p

Properties of Point Estimators

- 1. Bias difference in value
- 2. Consistency large samples
- 2. Efficiency small variance, unbiased, consistent

difference of Mean squared Error mean of estimator and true value standard deviation →

• combines bias (accuracy) and uncertainty (precision)

Bias

Bias (ô) = M_ô - O = M_ô - M₀ = M (ô - o) = ELÔ-O)

^O : unknown parameter $\hat{\theta}$: estimator of $\hat{\theta}$

Uncertainty

Uncertainty $(3) = 6$ standard error

$$
MSE_{\hat{\theta}} = Var(\hat{\theta}) + (Bias(\hat{\theta}))^2
$$

$$
MSE_{\hat{\theta}} = \mu_{\frac{[0.05, 0.02]}{2}} = \sigma_{\hat{\theta}}^2 + \mu_{\hat{\theta}} - \theta^2
$$

Jerror²

mean of error²

Derivation

- $M(\delta-\theta)^2$ $= E[(\hat{\theta} - \theta)^2]$ expectation value
- $= E [\hat{\theta}^2 + \theta^2 \lambda \hat{\theta} \theta]$
- = $E[6^2] + E[6^2] 2E[60]$
- $= E[8^2] (E[8])^2 + (E[8])^2 + E[8^2] 2E[60]$
- = $\mu_{\theta^2} (\mu_{\theta})^2 + (ELE)^2 + \theta^2 2\theta EE^2$

 $bias²$

Variance

= $var(6) + (E6) - \theta$ ²
= $var(6) + (\mu_6 - \theta)^2$

Q1. Let $x \sim Bin(n_1 p)$ where p is unknown. Find MSE of $\hat{p} = \frac{x}{p}$

$$
MSE = (Bias)^{2} + Variance
$$
\n
$$
Bias = \mu_{\hat{p}} - p = \mu_{\hat{q}} - p = \mu_{\hat{q}} - p = np - p = p - p = 0
$$
\n
$$
Std. dev = \sigma_{\hat{p}} = \sigma_{\hat{q}} = \frac{\sigma_{\hat{X}}}{n} = \frac{S_{np}(1-p)}{n} = \sqrt{\frac{p(1-p)}{n}}
$$
\n
$$
\sigma_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}}
$$
\n
$$
Variance = \sigma_{\hat{p}}^{2} = \frac{p(1-p)}{n}
$$
\n
$$
MSE = p(1-p)
$$

MAXIMUM LIKELIHOOD ESTIMATE

• value of estimators that when substituted in for the parameters maximise the likelihood function

Spaf/pmf a joint pdf/pmf

Steps

- I . write down likelihood function
- 2. Take natural log of likelihood function

n

- ³ . Differentiate the log of likelihood function
- 4. Set derivative equal to ⁰ to get MLE .

Normal Distribution

$$
f(x_{i};\mu,\sigma)=\frac{1}{\sqrt{2\pi}}e^{\frac{-(x_{i}-\mu)^{2}}{2\sigma^{2}}}
$$

Toint pdf for x₁, x₂...x_n
\n
$$
f(x_1,...,x_n;y_n,\sigma) = \prod_{i=1}^{n} \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x_i - \mu)^2}{2\sigma^2}}
$$

$$
L(\mu,\sigma) = \left(\frac{1}{\sigma\sqrt{2\pi}}\right)^n e^{\sum_{i=1}^{n} \frac{-(\alpha_i - \mu)^2}{2\sigma^2}}
$$

· Taking In on both sides

$$
Im(L(\mu_{1}\sigma)) = -n Im(\sigma\sqrt{2\pi}) - \sum_{i=1}^{n} \frac{(a_{i}-\mu)^{2}}{2\sigma^{2}}
$$

$$
F = Im(L) = -n Im \sigma - \frac{n}{2} Im(2\pi) - \frac{r^2}{4m} \frac{(n - \mu)^2}{2\sigma^2}
$$

- MLE of MEAN ζ N) $-$

$$
\frac{\partial F}{\partial \mu} = -\frac{\partial}{\partial \mu} \left(\sum_{i=1}^{n} \frac{(x_i - \mu)^2}{2 \sigma^2} \right) = 0
$$

 $\frac{-1}{2\sigma^2} \times \frac{\partial}{\partial \mu} \left(\sum_{i=1}^{n} (\chi_i - \mu)^2 \right) = 0$ S $2(x_i - \mu)(-1) = 0$
 $i=1$ $\sum_{i=1}^{n} (x_i - \mu) = 0$ $\sum_{i=1}^{n} x_i - \eta \mu = 0$ $\mu = \sum_{i=1}^{n} x_i$ MLE of STANDARD DEVIATION (0) $\frac{\partial F}{\partial \sigma} = \frac{\partial}{\partial \sigma} \left(-n \ln \sigma \right) - \frac{\partial}{\partial \sigma} \left(\sum_{i=1}^{n} \frac{(x_i - \mu)^2}{\lambda \sigma^2} \right) = 0$

$$
-\underline{v_1} - \sum_{i=1}^{10} \left(\frac{(x_i-\mu)^2}{2} - \frac{(-1)}{\sigma^3}\right) = 0
$$

Multiply both sides by σ^3

$$
-n\sigma^2 + \sum_{i=1}^{n} (x_i - \mu)^2 = 0
$$

$$
\sigma = \sqrt{\frac{\sum_{i=1}^{n} (a_i - \bar{x})^2}{n}}
$$

Bernoulli Distribution LIKELIHOOD FUNCTION

- X, ,x, . . . Xn (random samples) variables)
- The probability mass function (discrete) or probability density
Function (continuous) of each X_i is given as

f-Cai ;D)

. The joint pmf/pdf cand - intersection)

L(0)=
$$
P(X_i = x_1, X_2 = x_2 \cdots X_n = x_n)
$$

\n= $f(x_1; \theta) \cdots f(x_n; \theta)$ are independent
\n= π $f(x_i; \theta)$ (product)
\n= π $f(x_i; \theta)$ (product)
\nV parameter Cpopulation)

- For Bernoulli distribution, θ = p
- ° pmf of each Xi is

$$
\oint (x_i \; ; \; p) = p^{x_i} p^{1-x_i}
$$

 \cdot f(x₁,x₂...x_n)p) = p^x(-p)² '... p^"(1-p) <u>|-xุ</u> ' ' ' joint probability $p(X_1 = x_1, \dots x_n = x_n)$ = π $p^{x_i}(1-p)^{1-x_i} = L(p)$

 $L(p) = p^{\alpha_1} (1-p)^{1-\alpha_1} \cdots p^{\alpha_n} (1-p)^{1-\alpha_n}$ $= p^{x_1} \cdots p^{x_n} (1-p)^{1-x_1} \cdots (1-p)^{1-x_n}$ $\sum_{i=1}^{n} x_i$ $\sum_{i=1}^{n} 1-x_i$

· Taking en on both sides

$$
ln L = \left(\sum_{i=1}^{n} x_i\right) ln p + \left(n - \sum_{i=1}^{n} x_i\right) ln (1-p)
$$

· Taking derivative wrt p on both sides

Binomial Distribution

· paf of x- Binomial (n,p)

$$
f(x, p, p) = {^{n}C_x} p^{x} (1-p)^{n-1}
$$

L(p; n, p) = ^c
$$
(x p^x (1-p)^n
$$

· Taking In on both sides

$$
ln(L) = ln \left(\frac{n!}{(n-x)! x!} \right) + x ln p + (n-x) ln (1-p)
$$

· Taking derivative wrt p

$$
\frac{d}{dp} (ln(L)) = \frac{q}{p} - \frac{(n-x)}{1-p} = 0
$$

$$
\frac{\alpha(1-p)}{p} = \frac{p(n-x)}{p}
$$

$$
P = \frac{r}{n}
$$

Poisson Distribution

• pdf of
$$
X \sim \text{Poisson}(\lambda)
$$

$$
f(x;\lambda) = e^{-\lambda} \frac{\lambda^2}{\lambda!}
$$

· joint pmf / likelihood function

$$
L(\lambda) = f(x_1, \dots x_n; \lambda) = \prod_{i=1}^n e^{-\lambda} \frac{\lambda^{x_i}}{x_i!}
$$

$$
L(\lambda) = \frac{e^{-\lambda n} \lambda^{\sum_{i=1}^{3} \chi_i}}{\chi_i! \chi_i! \chi_i! \ldots \chi_n!}
$$

'n

$$
ln(L) = -\lambda n + (\sum_{i=1}^{n} x_i) ln \lambda - \sum_{i=1}^{n} ln(x_i)
$$

· Differentiate wrt >

$$
\frac{d (ln L) = -n + \sum_{i=1}^{n} x_i}{\lambda} = 0
$$
\n
$$
\hat{\lambda} = \sum_{i=1}^{n} x_i
$$
\nMLE of λ is $\hat{\lambda} = \overline{\lambda}$

The following data are the observed frequencies of occurrence Q2. of domestic accidents: we have $n = 647$ data as follows. Find MLE of λ

PROBABILITY PLOTS

steps

- 1. Sort the data
- a. Assign ranks from i=1 ton Cai for each data point)
- 3. Assign evenly-spaced values to the data (between ^o and I)

for each ni in the dataset, assign ^a value $r = \frac{6-0.5}{n}$ ← Hazen method

4. Find theoretical quantiles (a_i) and plot (a_i, a_i)

83. Construct a normal probability plot for the following data. Do these data appear to come from an approximately normal distribution?

- . We can conclude that the data are approximately normally distributed
- ° Best to have at least ³⁰ points for reliable conclusions

- ° Probability distribution of a statistic
- ° Eg: distribution of sample means for a sample size ⁿ where $n \leq$ size of population

central limit theorem

• Distribution of sample means calculated from sampling a population will follow normal distribution as the size 'n' of the sample increases

https://medium.com/@garora039/what-exactlyis-central-limit-theorem-7c1531eb2987

- Let $x_1, x_2, ... x_n$ be a simple random sample from a population with mean u and variance σ^2
- Let \overline{x} = $\frac{x_1 + ... + x_n}{x_n}$ be the sample mean n
- · Let $s_n = x_1 + ... + x_n$ be the sum of sample observations
- ° If ⁿ is sufficiently large,

$$
\overline{X} \sim N(\mu, \frac{\sigma^2}{n})
$$

 $S_n \sim N(\eta\mu, n\sigma^2)$

A business client of FedEx wants to deliver urgently a large 94. freight from Denver to Salt Lake City.

When asked about the weight of the cargo they could not supply the exact weight, however they have specified that there are total of 36 boxes.

You are working as a Business analyst for FedEx and you have been challenged to tell the executives quickly whether or not they can do certain delivery.

Since, we have worked with them for so many years and have seen so many freights from them we can confidently say that the type of cargo they follow is a distribution with a mean of μ = 32.66 kg standard deviation of σ = 1.36 kg. The plane you have can carry the max cargo weight up to 1193 kg. Based on this information what is the probability that all of the cargo can be safely loaded onto the planes and transported?

$$
\mu = 32.66 \quad \sigma = 1.36 \quad n = 36
$$
\n
$$
S_n = 1193
$$
\n
$$
S_n \sim N(36 \times 32.66 \quad, 36 \times 136^2)
$$
\n
$$
A_n \sim \frac{1}{2}
$$
\n
$$
S_n \sim N(1175.76, 66.5856)
$$
\n
$$
P(S_n < 1193)
$$
\n
$$
\sqrt{66.5856}
$$
\n
$$
P(Z < 2.113) = 0.9826 = 98.267
$$

0s. Drums labeled 30 L are filled with a solution from a large vat. The amount of solution put into each drum is random with mean 30.01 L and standard deviation 0.1 L.

a) What is the probability that the total amount of solution contained in 50 drums is more than 1500 L? b) If the total amount of solution in the vat is 2401 L, what is the probability that 80 drums can be filled without running out? c) How much solution should the vat contain so that the probability is 0.9 that 80 drums can be filled without running out?

$$
\mu = 30.01 \quad \sigma = 0.1
$$
\n
$$
(\omega \text{ n} = 50 \quad , \text{ } \rho(\text{S}_n > 1500)
$$
\n
$$
\text{S}_n \sim N(\text{ n} \mu, \text{ n} \sigma^2)
$$
\n
$$
\text{S}_n \sim N(\text{ 1500.5, 0.5})
$$
\n
$$
Z_{1500} = \frac{1500 - 1500.5}{\sqrt{0.5}} = -0.707
$$
\n
$$
\rho(2 > -0.707) = 1 - 0.2389 = 0.7611 = 76.11\frac{1}{10.11}
$$
\n
$$
(\text{b) total of } 80 < 2401 \quad , \text{ } n = 80
$$
\n
$$
\text{S}_n \sim N(2400.8, 0.8)
$$
\n
$$
Z_{2401} = \frac{2401 - 2400.8}{\sqrt{0.8}} = 0.2236 = 0.22
$$
\n
$$
\text{S}_n = \frac{2401 - 2400.8}{\sqrt{0.8}} = 0.2236 = 0.22
$$

 (1) $Sn=?$ $Area=0.9$ $n=80$

for $area = 0.9$, $z = 1.28$

for $z \le 1.28$

 \therefore Sn = Zx 5 + μ = Zx $\sqrt{80 \times 0.01}$ + 80x 30.01

 $Sn = 2401.95 L$

CORRECTION

- · To approximate discrete distribution (binomial, Poisson) using continuous (cnormal) distribution
- · Approximations for large no. of Binomial trials
- · Correction: add or subtract 0.5 from discrete integer value for more accurate results

Probability Discrete Continuous

Normal approximation to Binomial

- · If X~ Bin (n₁p)
- \bullet $X = Y_1 + Y_2 + \ldots + Y_n$ where Y_1, \ldots, Y_n are samples from a Bernoulli Cp) population

$$
\hat{p} = \frac{x}{n} = \frac{y_1 + y_2 + ... + y_n}{n}
$$
, which is also sample mean \overline{y}

- Bernoulli(p) population has mean μ =p and variance σ^2 =p(1-p)
- ° Central limit theorem (ⁿ is large)

$$
X \sim N(np, np(1-p))
$$

$$
\widehat{p} \sim (p, p(1-p))
$$

- Thumb rule: np > 10 and n (1-p) > 10
- · If x-Bin (n,p) and np >10, n(1-p) >10

$$
X \sim N(np, np(1-p))
$$

$$
\hat{p} \sim N(\rho, p(l-p))
$$

% Imagine that a fair coin is tossed 100 times. Let X represent the number of heads. Then,

 $X\sim Bin$ (100,0.5)

Imagine that we wish to compute the probability that X is between 45 and 55. This probability will differ depending on whether the endpoints, 45 and 55, are included or excluded. Compute the following,

- $I. P(45 \leq x \leq 55)$
- 2. PCX ²⁶⁰)

 $n = 100$ $p = 0.5$ $np = 50$ $\ln(1-p) = 50$

X-N(50,25)

 $1.$ PC 44.5 2×2 55.5)

using calculator, $P = 0.7287 - 72.87/1$.

 $2.$ P(\times >54.5)

using calculator, $P = 0.0287 - 2.877$.

Normal approximation to Poisson

 \bullet If $X \sim Poisson(\lambda)$ with large n and $\lambda > 10$

$$
\mu_{\mathsf{X}} = \lambda \qquad \sigma_{\mathsf{X}}^2 = \lambda
$$

$X \sim N(\lambda, \lambda)$

67. The number of hits on a website follows a Poisson distribution, with a mean of 27 hits per hour. Find the probability that there will be 90 or more hits in three hours.

$$
\lambda = 27 > 10
$$

CONFIDENCE INTERVALS

- ° Range of plausible values for a parameter, based on sample data
- ° Differs from sample to sample

· 9s:/ confidence that population parameter in that range

8%. Find the value of zarz to use to construct a confidence interval with level:

a) 95% b) 98% c) 99% d) 80%

(a)
$$
\alpha/2 = 2.5' = 0.025 = 2 = \pm 1.96
$$

$$
|y| = |y| = |0.0| = 2 = \pm 2.33
$$

 $d/2 = 0.5$ $/2 = 0.005 \Rightarrow Z = \pm 2.57$ Ω

(d)
$$
d/2 = 10'/ = 0.1 = 2 = \pm 1.28
$$

89. Find the levels of confidence intervals that have the following values of za/2 : a) $z_{a/2} = 2.17$ b) $z_{a/2} = 3.28$

(a)
$$
2d/2 = 2.17
$$

\n $2d/2 = -2.17$
\n $2d/2 = -2.17$
\n $2d/2 = -2.17$
\n $2d/2 = -2.17$
\n $6d/2$ for CLP of p
\n $6e$
\n(b) $2d/2 = 3.28$
\n $2d/2 = -3.28$
\n $2d/2 = -3.28$
\n $5 = n+4$
\n $6 = 7.14$
\n $6 = 7.14$
\n $6 = 7.14$
\n 7.16
\n $8 = 7.12$
\n $8 = 7.12$
\n $8 = 7.12$
\n 10.1915
\n 10.191

 Q ₁₀. A 90% confidence interval for the mean diameter (in cm) of steel rods manufactured on a certain extrusion machine is computed to be (14.73, 14.91). True or false: The probability that the mean diameter of rods manufactured by this process is between 14.73 and 14.91 is 90%.

False. 90% confidence that population mean in that range

ONE-SIDED CONFIDENCE **BOUNDS**

Qu. In a sample of 80 ten-penny nails, the average weight was 1.56g and the standard deviation was 0.1g. a) Find a 90% upper confidence bound for the mean weight. b) Find a 80% lower confidence bound for the mean weight. c) Someone says that the mean weight is less than 1.585g. With what level of confidence can this statement be made?

(a)
$$
z = 1.28 \Rightarrow X = 1.28 \times 0.1 + 1.56 = 1.5743
$$

\n(b) $\arctan = 0.2 \Rightarrow z = -0.84 \Rightarrow X = -0.84 \times 0.1 + 1.56 = 1.5506$
\n(c) $\text{upper} = 1.585 \Rightarrow Z = \frac{1.585 - 1.56}{0.1/\sqrt{80}} = 2.236 \Rightarrow c = 98.75$

 $Q(z)$. Of a random sample of $n = 150$ college students, 104 of the students said that they had played on a soccer team during their K-12 years. Estimate the proportion of college students who played soccer in their youth with a 90% confidence interval.

$$
\hat{p} = \frac{104}{150} = 0.693 \qquad n = 150 \qquad 1 - \hat{p} = 0.307
$$

$$
90'/CI \Rightarrow \pm 1.65
$$

$$
\hat{p} = 1.65 \sqrt{\frac{p(1-p)}{n}}
$$

$$
0.693 \pm 1.65 \sqrt{\frac{0.693 \times 0.307}{150}}
$$

$$
0.693 \pm 0.062
$$

CONFIDENCE INTERVAL FOR DIFFERENCE BETWEEN MEANS

$$
(\overline{x}-\overline{y})
$$
 $\pm z_{\alpha/2} \sqrt{\frac{\sigma_{\overline{x}}^2}{n_{\overline{x}}}} + \frac{\sigma_{\overline{y}}^2}{n_{\overline{y}}}}$

student 's t - Distribution

- ° Samples of ^a full population
- ° Larger sample size → normal distribution
- . Theoretical probability distribution symmetrical, bell-shaped, similar to standard normal curve
- Degrees of freedom another parameter

$$
df = sample \ size -1
$$

- As df increases , approaches standard normal distribution (after df =30, almost identical)
- · t-score calculated like z-score
- ° The quantity $\frac{\overline{x}-\mu}{\frac{\sigma}{2}}$ has a t. distribution with n-^I df syn
- $\mathsf{Q}\mathsf{B}$. A random sample of size 10 is drawn from a normal distribution. a) Find $P(t > 1.833)$ b) Find $P(t > 1.5)$

$$
df = 9
$$

 (0) P (t) $.833$) = 0.05

(b) $P(t > 1.5) = b/w 0.05$ and 0.10

- \mathbf{Q} _k Find the value of t_{n-1, a/2} needed to construct a two-sided confidence interval of the given level with the given sample size: a) 90% with sample size 12
	- b) 95% with sample size 7

(a)
$$
df = 11
$$
, *area* = 0.05

 $t = 1.796$

(b) df=6 , area - - 0.025

ر
|-
| 142 ± 2.447

Note : if population standard deviation is known, and it is known to come from normal distribution, use z and not t

 τ